Indian Statistical Institute Second Semester Examination 2003-2004 B.Math(Hons.) III Year Optimization Date:06-05-04

Time: 3 hrs

Max. Marks: 75

Answer all Questions

- 1. Prove that exactly one of the following two systems has a solution System I: $Ax \ge 0$, $x \ge 0$, $c_x^t > 0$ System II: $A^t y \ge c$ and $y \le 0$. [You may use Farka's theorem] [10]
- 2. Let $\alpha, \beta, \in R$ consider the *LP*-model: $Minimize(x_1 + x_s)$ such that $\alpha x_1 + \beta x_2 \ge 1$ $x_1 \ge 0$, x_2 -unrestricted.

Determine necessary and sufficient conditions for α and β such that the model:

- a) is infeasible
- b) is feasible
- c) has an optimal solution
- d) is feasible and the optimal solution is unbounded.
- e) has a multiple optimal solution.

[10]

3. Consider the Linear Program

$$Minimize\sum_{j=1}^{n} c_j x_j = Z$$

subject to

$$\sum_{j=1}^{n} P_j x_j = b, \qquad P_j \in \mathbb{R}^m$$
$$x_j \ge 0 \text{ for } j = 1, 2 \dots n$$

Suppose that $Z = Z^*$, $x_j = x^*$ for j = 1, 2...n is a nondegenerate optimal basic feasible solution. A new activity vector is being considered for augmenting the problem to [i.e., a new variable is added and the problem is changed to]

Minimize $\sum_{j=1}^{n} c_j x_j + c_{n+1}, x_{n+1} = Z$ subject to $\sum_{j=1}^{n} P_j x_j + P_{n+1} x_{n+1} = b$, $P_j \in \mathbb{R}^m$, $x_j \ge 0$

a) How would you test whether the column (n + 1) is a candidate for improving the solution?

b) Assume that the column n + 1 passes the test and x_{n+1} enters the basic set displacing x_r . Let $Z = \hat{Z}$ and $x_j = \hat{x}_j$ for $j = 1, 2 \dots n + 1$ be the updated feasible solution. Prove that it is a strict improvement, that is $\hat{Z} < Z^*$.

c) Suppose the augmented problem is now iterated to a new optimal solution. Prove that X_{n+1} once in never leaves the basic set. [10]

4. a) If the primal system $\min Z = c^t x$, $Ax \ge b$, $x \ge 0$ has a feasible solution and the dual system $\max V = b^t y$, $A^T y \le c$, $y \ge 0$ has a feasible solution then there exist optimal feasible solutions. $x = x^*$ and $y = y^*$ to the primal and dual systems such that $b^t y^* = \max V = \min Z = c^t x^*$

b) Use the dual Simplex method to solve Minimize $x_1 + 2x_2$ subject to

$2x_1 - 4x_2$	\geq	2
$2x_1 - 2x_2$	\geq	7
$x_1 + 3x_2$	\geq	-2

5. Find the optimal solution for the following Transportation problem

 $x_1 \ge 0, x_2 \ge 0$

 R_1 R_2 R_3 R_4 Availability W_1 10 56 7 25 $\mathbf{2}$ W_2 8 7 256 3 W_3 9 4 8 502030 35 Requirements 15

[10]

[10]

6. Apply Dikin's affine scaling procedure with respect to the interior point \bar{x} on the following LP Model; show that a unit ball (circle in R^2 , line segment in R) with centre 1 and radius 1 is completely contained in the "transformed feasible region".

$$\max x_1 + 2x_2$$

subject to $2x_1 + x_2 + x_3 = 2$, $x_1, x_2, x_3 \ge 0$
 $\bar{x} = [0.1, 0.1, 1.6]^t$ [10]

2

7. Prove that is both the <u>Primal feasible region</u> F_p and the dual feasible region F_D are nonempty then at least one of the corresponding *LP*-models (*P*) or (*D*) has an <u>unbounded feasible solution</u>. [10]

Solution: $[F_P = \{x \in R^n | Ax = b, x \ge 0\}; F_D = \{y \in R^m | A^t y \le c\}]$

8. a) There are five pumps available for developing five wells. The efficiency of each pump in producing the maximum yield at each well is given below

		Well			
Pump	1	2	3	4	5
1	45	40	65	30	55
2	50	30	25	60	30
3	25	20	15	20	40
4	35	25	30	25	20
5	80	60	60	70	50

In what way should the pump be assigned so as to $\underline{\text{maximize}}$ the overall efficiency !

[10]

b) Show that all bases for the transportation problem are triangular